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Self-Scaling Variable Metric Algorithms Without Line 
Search for Unconstrained Minimization* 

By Shmuel S. Oren 

Abstract. This paper introduces a new class of quasi-Newton algorithms for uncon- 
strained minimization in which no line search is necessary and the inverse Hessian approxi- 
mations are positive definite. These algorithms are based on a two-parameter family of rank 
two, updating formulae used earlier with line search in self-scaling variable metric algorithms. 
It is proved that, in a quadratic case, the new algorithms converge at least weak super- 
linearly. A special case of the above algorithms was implemented and tested numerically on 
several test functions. In this implementation, however, cubic interpolation was performed 
whenever the objective function was not satisfactorily decreased on the first "shot" (with unit 
step size), but this did not occur too often, except for very difficult functions. The numerical 
results indicate that the new algorithm is competitive and often superior to previous methods. 

1. Introduction. This paper addresses the problem of minimizing a smooth real 
valued function f(x) depending on an n-dimensional vector x, assuming the avail- 
ability of the gradients Vf(x) = g(x) for any given x. An important class of algorithms 
for solving this problem is the quasi-Newton methods also known as variable metric 
algorithms. In these methods, the successive points are obtained by the equation 

(1) Xk+1 = Xk -aDkDkqk, 

where ak is an appropriate positive scalar and Dk is an approximation to the inverse 
Hessian of f, inferred from the gradients at the previous points and updated at every 
iteration. For notational convenience, we omit the subscripts k whenever it is possible 
and denote by superscripts (*) and (**) the values corresponding to k + 1 and k + 2, 
respectively. The first algorithm of this type and still the most popular is the DFP 
algorithm introduced by Davidon [5] and further developed and simplified by Fletcher 
and Powell [8]. In this algorithm, ak is chosen (by a line search) to minimize f(x - aDg) 
and D is updated using the formula 

(2) D* = D - Dqq'D/q'Dq + pp'/p'q, 

where p = - aDg and q = g- g. The method has three properties that are felt to 
underline the superior convergence characteristics it often displays. 

(a) The matrices D are all positive definite provided that Do is chosen to be 
positive definite. 

(b) If f is a positive definite quadratic function, the algorithm is identical to the 
conjugate gradient method and thus converges to the solution in at most n steps. 
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(c) Iff is a positive definite quadratic function, and if convergence to the solution 
requires the full n steps, then the nth approximation D. is identically equal to the 
inverse Hessian. 

Unfortunately, the last two properties are very sensitive to the line search accuracy 
which, as a result, significantly influences the performance of the algorithm (see 
Oren [18] and Luenberger [16]). Alternative algorithms, that have the above three 
properties, were described in [2], [3], [12], and [14]. However, all of these methods 
require line search and none of them displayed a significant advantage over the 
DFP method. Furthermore, in a recent paper, Dixon [7] proved that these algorithms 
are actually all equivalent even in nonquadratic cases. 

The inconvenience and high computational effort involved in the line search 
required for DFP-like algorithms motivated several researchers in the past few years 
to develop algorithms in which it is not necessary to find the minimum along the 
direction of move at every step. Such methods, which are often referred to as algo- 
rithms without line search, were described in [6], [9], [17], [22] and [23]. In these 
algorithms, a is fixed beforehand (usually taken as unity) and corrected only if the 
objective function is not sufficiently decreased to ensure convergence. The correction 
is usually done either according to some "rule of thumb" (for example, try a = 1, 
0.1, 0.01, ... etc.) or by interpolation. Most of these methods are based on a rank-one 
updating formula for D that ensures property (c) for arbitrary step size a. However, 
this formula does not ensure property (a), i.e., the D's are not guaranteed 
to be positive definite, which may cause failure of the algorithm. The different rank-one 
methods that were suggested contain additional features to ensure convergence 
either by forcing D to be positive definite or by controlling the directions of search. 
Evidently, none of these algorithms was reported to be significantly more efficient 
than the DFP method. 

Fletcher [9] suggested an algorithm without line search that retains property (a) 
while relinquishing properties (b) and (c). In this algorithm, D is updated by formula 
(1) or another formula discovered by Broyden [3]; the formula used depends on 
whether or not p'q < q'Dq. While the experimental results given for this algorithm 
seem quite favorable, its theoretical support is presently lacking. It was only proved 
that if the function to be minimized is a positive definite quadratic function with 
Hessian H, then the eigenvalues of the matrix R = H"/DH"/ move monotonically 
to unity, while one of the eigenvalues equals unity. This property does not ensure 
decrease in the condition number of R which was shown by Luenberger [16] to have 
a major effect on the convergence properties of the variable metric algorithm when 
conjugacy is destroyed. On the contrary, if the problem is poorly scaled, the condition 
number of R may increase on the first step and become greater than the condition 
number of H. Such a situation is illustrated in Fig. 1. Since the tendency of the 

? ,. t t C? RO~~~~~~~~~= H 

FIGURE 1. Deterioration of the Eigenvalue Structure on the First Iteration in a Poorly Scaled 
Problem (Assuming Do = I) 
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eigenvalues of R to unity on subsequent iterations is not strictly monotonic, this 
condition number may never recover, which can result in a convergence rate inferior 
to that of the steepest descent method. Such examples were given in [16], [18], and [19]. 

2. The Self-Scaling Updating Formula. The results obtained by Oren and 
Luenberger [20] led to developing the Self-Scaling Variable Metric Algorithms 
introduced by Oren ([18], [21]). In these algorithms, D is updated by the following 
two-parameter formula: 

( Dqq' D \ pp'I 
D* = -D - 

Dq + Ovv'p' + pq where 
(3) qD q2 q 

V = (q'Dq p ID) pq q'Dq 

(4) z = P-gDq + (1 -) qIDq 

and p, 0 E [0, 1]. 
For -y = 1, (3) is identical to the convex class of updating formulae given by 

Fletcher [9]. For an arbitrary -y, (3) has the effect of scaling f(x) by -y while using 
Fletcher's convex class of formulae. It can be shown (see [18] or [21]) that the -y 
defined by (4) guarantees that in a quadratic case the condition number of R is 
monotonically decreasing. Furthermore, these algorithms are invariant under scaling 
of the objective function or the variable. Sensitivity to such scaling was pointed out 
by Bard [1] to cause numerical instability of DFP-like algorithms. In addition to 
the new properties above, the SSVM algorithms have properties (a) and (b) but not 
property (c). The relinquished property (c) turns out to be important only when the 
number of variables is small, in which case the SSVM algorithm is less efficient than 
the DFP. In large-dimensional problems (above ten variables), however, the SSVM 
method was superior. 

The relative success of Fletcher's algorithm (despite its lack of theoretical support) 
makes it only natural to try using the SSVM updating formulae in the same manner. 
Since property (c) is relinquished anyhow by eliminating the line search, it appears 
there is nothing to lose by using the SSVM formula while gaining the additional 
properties of these formulae mentioned above. This is certainly true from a theoretical 
point of view. We were actually able to prove (Section 4) that for a quadratic function, 
an algorithm in which a = 1 and D is updated by (3) and (4) converges either in a 
finite number of steps or weak superlinearly.** The computational results obtained 
with such an algorithm (Section 5) proved to be favorable as well. 

3. The Basic SSVM Algorithms Without Line Search. For notational conven- 
ience, we shall represent formula (3) by 

(5) D* =D(Dyy p, q) 

and (4) by 

7 = 7(f) 

** A sequence {ek converges weak superlinearly if there exists an N such that limk_(ek+A /ek) = 0. 
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Our basic algorithm can then be described as follows. 
Algorithm 1. 
Start with any x0. 
Step 1. Set k = 0 and choose Do to be a positive definite matrix. 
Step 2. Set Pk = -Dkgk and obtain Xk+1 = Xk + Pk, gk+1 = Vf(xk+l) and qk = 

gk+1 - 

gka Step 3. Choose 'Pk C [0, 1] and k E [0, 1] 

Step 4. Set Dk+l = DOk (Dk, Y(Pk)A Pk, qk). 

Step 5. Add 1 to k and return to Step 2. 
Algorithm 1 is given in a rather crude form. In a practical implementation such as the 
one described in Section 5, one has to add the requirements that pkqk > 0 (required 
for positive definiteness of Dk+l) and f is strictly monotonically decreasing to ensure 
convergence. Algorithm 1, however, is more convenient for analyzing convergence 
properties in a quadratic case where the additional features are not necessary. 

4. Convergence in a Quadratic Case. In this section, we analyze the converg- 
ence properties of Algorithm 1 when applied to a positive definite quadratic function 
with Hessian H. The matrices of interest in this case are R = H112DH112 which 
characterize the closeness of the approximations D to H-'. By pre- and post-multi- 
plying (3) by H"2 and using the relation q = Hp, one can obtain an updating formula 
for R which turns out to have the same form as (3), only that D is replaced by R 
while p and q are replaced by z = H"'2p. Thus, using the notation introduced above, 
we can write 

(6) R* = Do(RI,-Z'Z). 

y(s) can also be expressed in terms of R and z in the form 

z'R -Iz 
(7) z'z 

( 

We now define a scalar function 

(8) Q(R) = Tr(R) Tr(R-1). 

First, we show that Q(R) is bounded below by n2 for any positive definite n X n 
matrix R. We shall also prove that { Q(Rk) } is monotonically decreasing over the 
sequence { Rk } generated by Algorithm 1 and that 

(9) |IXk2 - X0t |/ tXk - X0 | | _(Q(Rk) -Q(Rk+ 1)), 

where X? is the solution point and f3 a positive scalar. This will imply that unless the 
minimum is reached in a finite number of steps, { Q(Rk) } is a strictly monotonically 
decreasing sequence. However, since it is bounded below, the right-hand side in (9) 
goes to zero, implying the superlinear convergence of Algorithm 1. 

PROPOSITION 1. 

(10) n2 ? Q(R) ? 4K(R)n2/[1 + K(R)]2 

for any n X n positive definite matrix R, where K(R) = I RI R- 11, is the condition 
number of R. 

Proof. 
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(11) Q(R) = Tr(R) Tr(R1') = ( x )(E 1) 

where X i are the eigenvalues of R. Defining the n-dimensional vector r = 

(1, 1, 1, , 1), we can write 

(Ar(r'-r) 2 (12) Q(R) = (' r)2- Ar n2 

where A is a diagonal matrix whose elements are Xi. The lower bound in (10) follows 
from (12) and the Cauchy Schwarz inequality while the upper bound follows from (12) 
and the Kantorovich [15] inequality. 

The properties of the expressions D0(R, -y, z, z) and -y(p) were extensively in- 
vestigated in [18], [20] and [21]. Proposition 2 summarizes without proof some of these 
properties that will be used in this section. 

PROPOSITION 2. For any n X n positive definite matrix R and nonzero vector 
z E E', there holds 

(13) 1. [D(Ry z zZ)]-1 = D1(R-1, 1/y, z, z) V y > 0. 

(14) 2. @D0(R, y, z, z) = O(R y z, z) + Oyuu' 

= D1(R, y Z. z)- y( - O)uu' V y > 0 and O C [0 1], 
where 

(15) u = (z'Rz)ll2(z/zfz - Rz/z'Rz). 

3. @D(R, y, z, z) is positive definite for any positive y and 0. 

(16) 4. 0 _ y(O) < y(p) _ y(1) V (p C [0, 1]. 

(17) 5. K(DO(R. y(qp), z, z)) < K(R) V 0, (p C [O 1]. 

PROPOSITION 3. For any n X n positive definite matrix R, nonzero vector z C E 
,y > 0, and 0 E [O 1], there holds 

(18) Q(? (R. zy, z, z)) < Tr(D'(R. zy, z, z)) Tr(JOl(R-1 1/y zz)). 

Given an n X n nonsingular symmetric matrix A, a scalar a, and an n-vector a, 
the rank-one modification rule (see e.g. [13]) implies that 

(19) (A + aaa')1 = A-, _ afA 1 A- aa'A1. 1 + aea A a 
It is also well known that 

(20) Tr(A + aaa') = Tr(A) + aa'a. 

From (14) and (20) it follows that 

(21) Tr(DO(R, y, z, z)) ? Tr(D'(R, y, z, z)) 

and by (13), (14), (19), and (20), 

(22) TrWD0o(R, y, z, z)]-1) Tr(D[O(R, y, z, z)]-1) 

= Tr(D1(R-1, 1/y, z, z)). 

(18) follows directly from (21) and (22). 
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PROPOSITION 4. For any n X n positive definite matrix R, nonzero vector z E E 
0 E [0, 1], and 4[0, 1], there holds 

(23) Q(R) - Q(VD(R, y(qp),zz)) > u'R -u > 0 

where u is defined by (15). 
Proof. By definition 

(24) 5D(R, y(qp), z, z) R - Rzz'R( + z Rz zz 

where u is defined by (15). 
Also 

(25) ,'u z'Rz ( Z'R2z I Z'R2Z z'Rz 
\(z'Rz)2zz/ z'Rz - z' 

Applying (20) repeatedly to (24) and then using (25) yields 

(26) Tr(OD(R, ey(<), z, z)) = (Tr(R) - z'Rz/z'zWy(p) + 1 

and consequently 

(27) Tr(5D1(R1C, 1,/y(q~), z, z)) = (Tr(RI) - ) z) + 1. 

From (26) and (27) and Proposition 3 it follows that 

Fz'Rz I1[ I~ z'R_ z 
0(5Q(R, y(p), z, z)) Tr(R)- Z (Z + 0)JLTr(R)- ZZ + 'y (0 

Tr(R) - r(R)z'Rz TrR1 Iz__ ZRz (z'Rz)(z'R-'z) 
(28) = Tr(R) Tr(Rz'z Tr(R) Tr(R ') ()2 + 

+ y(&p)[Tr(R) - zRz ] + [Tr(R) - IR ] 

The last two terms in (28) are clearly positive by virtue of the positive definiteness of R. 
Thus, it is possible to obtain an upper bound on the right-hand side of (28) by replacing 
'y(p) and 1/'y(q9) in the last two terms with their respective upper bounds (z'R-'z/z'z) 
and (z'Rz/z'z). This yields 

(z'Rz)(z'R- z) 
(29) 0(5)D(R, y(qp), z, z)) ?< S(R) + 1 - (z'z)2 

and from (15) we obtain 

(f ' f 'R(R- ) (z'R-l I)(z'Rz) (30) u'Ru = (zR)(-4 -)(Rz zR/= (')2 1 

(25) results from substituting (30) into (29). 
COROLLARY 1. Let {D, } and {Pk,} be the sequences of inverse Hessian approxima- 

tions and updating vectors generated by Algorithm 1 when applied to a positive definite 
quadraticfunction with Hessian H. If we define Rk = H1'2DkH'12 and Zk = H1/2pk, 

then the following properties holdfor all k: 
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1. Rk is positive definite. 

(31 ) 2 . n 2< S2(Rk +l1) < Q(Rk) k 

(32) 3. Q(Rk) - Q(Rk+l) > uIRluk U> 0 where 

Uk = (z'RkZk)L - 

kZk ZkRAkzk 

(33) 4. K(Rk+i) ? K(Rk) < K(Ro). 

Proof. Since Do is positive definite and fPk, Ok E [0, 1], it follows by Proposition 2 
that R is positive definite and, by induction, it is true for all Rk . 

The remaining properties follow from Propositions 2, 3, and 4. 
THEOREM 1. For a positive definite quadratic function, Algorithm I converges to 

the minimum either in a finite number of steps or weak superlinearly. 
Proof. First we show that 

I(fXA+2 - l0 
(34) I Xk - Xo1 < (K(H)[K(Ro) + 1][K(R)]3 [Q(Rk) - (Rk+1)]) 

where xo denotes the minimum point. Again we shall omit the subscripts and use 
superscripts (*) and (**) for k + 1 and k + 2. By Algorithm 1, 

(35) q* = Hp* = HD*g* = g** -g* 
Also 

(36) 9* = q + g = (H- D-')p. 
By (35) and (36), 

(37) g** = (I- HD*)g* = (I- HD*)(H - D l)p. 

Expressing (37) in terms of R and z yields 

(38) H-1/2g** = (I-R*)(I - R')z = z -R*z - R z + R*R lz. 

By (15), 

(39) U'z = 0. 
Thus, from (5), (3), (15), and (39), we have 

(40) z-R*z = z - = 0 

and we also obtain 

Rz(z'z + u/Rz,( z(z'R-'z) 
(41) R*R (z - zURz /R + zz p):+ 
Again, by (15), 

(42) u'R-1z (Z Rz)1/2(Z z - I z) 

(43) Z- (Rz(z'z) _ z'z 
(43) ~~~~~~z' Rz -(z'Rz) !12 u 
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and 

z/z Z/Z 
(44) R z= (z z + , 2R u. 

(zRz) (z Rz)l2 

Substituting (40), (41), (42), (43) and (44) into (38) yields 

H- 12g** =Y 1(<)[( tR )/2 + O(z Rz)l (Zz z'Rz)] 

(45) [(zf Rz) 112 
R 

+ [zf1 - - ( 12R Ru. 
[ZZ Z Z Rz] (zf Rz)l/2Rlu 

From (45) we obtain, after using (39) and (42), 

g - [y(9)]2(z'Rz) ZfRz + o(Z'z -z'Rz)]2 

(46) - 2 
z 

() Rz + o(ZZR21 (Z*z)2)]( R1 
L z zRZ J~ 

- fzR 1z ,lfZ2 f (Z'fZ)2 
2. 

- - (Z'Z) + RZ (U'R u). 
By the Cauchy-Schwarz inequality, 

(47) z'Rlz/z'z ?> z'/z'Rz, 

from which it follows that the second and third terms in (46) are nonpositive. Thus, 
the right-hand side of (46) can be bounded above by dropping the second and third 
terms and replacing -y(q9) and 0 in the first term with their respective upper bounds, 
(z'R- z/z'z) and 1. This yields 

(48) g** H1g** < (zR f 
Rz)u4RU + (-4)2(ZRz)(u R 2U). 

From the definitions of z and R, we obtain 

(49) Z'Rz = g'DH1/2RH1/2Dg < IJRII3 (g'H-1g) 

also 

(50) u'u < IiR|i (u'R'1u), 

(51) u'R-2 ?< 1R111 (u'R1u), 

and 

(52) (z'z)/(z'Rz) < (z'R-1z)/(z'z) < I 1R-1 . 

Substituting (49) through (52) into (48) yields 

(53) g**fH-lg**/gfH-lg < ([K(R)]4 + [K(R)]3)(u'R 1u). 

However 

g** = H(xk+2 - x0) and g = H(xk - x0) 

so that 
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(54) g**H g** (Xk+2 
- 

X0)'H(Xk+2 
- 

X0) > 1 I IXk+2 - X0 
1 

g Hg - (Xk - xo)'H(Xk - X0) K(H) I| Xk - X0112 

By (53) and (33) it then follows that 

(55) I L 
xk?2 

- xoI 
< (K(HK)[(Ro)]3[K(Ro) + 1](4Rk Uk)). 

II1Xk -X0li 

(34) follows immediately from (55) and (32). It is clear from (34) that if, for some 
k, Q(Rk) = Q(Rk+l), then Xk+2 = x0, i.e., the algorithm converges in a finite number 
of steps. If this does not happen, then I Q(Rk) } is a strictly monotonic decreasing 
sequence bounded below by n2; thus I Q(Rk) I converges to a limit point and hence 

(56) lim (Q(Rk) -Q(Rk+l)) = 0. 
k-eo 

By (34) and (56) it then follows that 

(57) IiM IIXk+2 - x011/I|xk - x011 = 0, 
k-eo 

which implies weak superlinear convergence. 

5. Implementation and Experiments. As mentioned earlier, an implementation 
of an algorithm based on Algorithm 1 that will work on a general nonquadratic 
function has to include additional features that will guarantee its global convergence. 
To ensure positive definiteness of the inverse Hessian approximation, we test at each 
step whether p'q > 0. This condition can always be satisfied by taking a step large 
enough to cross the minimum along the line. To guarantee convergence to a stationary 
point, we used the Goldstein test [11] which can be written in the form 

(58) of < [f(x*) - f(x)]/g'p < 1 - 

with 0 < o < -. 
Testing the sensitivity of an algorithm to the parameters p and 0 was out of the 

scope of this paper, and we confined our experiments to the case Ok k = 0 for 
all k. This yields an updating formula of the form 

/ Dqq' D p'Iq pp' (59) D* )D - I + p p 
q Dq q Dq pq 

which was also used in [18], [19], and [21] to test SSVM algorithms with line search. 
The algorithm used in this paper was constructed so that a new point is obtained 

using a = 1; however, if this point does not satisfy condition (58), then a is evaluated 
by a line search based on cubic interpolation and condition (58) is replaced by other 
tests within the search subroutine. This strategy proves to be much more effective 
than trying to modify a according to some rule of thumb. The crucial point in such 
an algorithm is the choice of af which actually determines the frequency of line searches. 
If 0f = -, for instance, there will be a line search at each step, while if a- is taken very 
small (O to 0.01), almost all the iterations will be without line search. The best choice 
of a- clearly depends on the nature of the function being minimized. For quadratic 
functions, a small a- was satisfactory, while for Rosenbrock's and Wood's functions 
a larger a- was necessary. In general, 0.25 > a- > 0.15 turned out to be a good choice 
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for all the functions tested, and within this range the performance of the algorithm 
was quite insensitive to changes in o. 

An Algol W program of the algorithm described above was tested for several test 
functions with different values of o. The experiments were performed on an IBM 
360/65 computer in single precision. Table 1 summarizes the results of these experi- 
ments. For comparison, we also include results from [18] obtained for the DFP and 
the SSVM algorithms (with line search) and some of the results given by Fletcher [9] 
for his algorithm. 

Test Functions. 
(a) Poorly Scaled Quadratic Function-6 variables. 

f(X) = 2(x'Qx). 
Q = diag (300, 280, 260, 240, 220, 200). 
Minimum point: x* = (0, 0, 0, 0, 0, 0), f(x*) = 0. 
Starting point: xo = (1, 1, 1, 1, 1, 1). 

(b) Hilbert-Matrix- Quadratic Function-N variables. 
N N 

f()=E E [(xi - )(Xi - l)(j + i-1)]. Z=1 i=l 

Minimum point: x* = (1, 1, 1, * , 1), f(x*) = 0. 
Starting point: xOk = -4/k. 

(c) Helical Valley [8]-3 variables. 

f(x1, X2, X3) = 100{[X3 - 100(X1, X2)]2 + [r(xl, X2)- 1]2} + 3 

arctan (x2/x1) for xi > 0, 
O(x1, x2) =2r 

- + arctan (x2/x1) for xl < 0. 
~2 2er 

r(x1, X2) = (X4 + X2) 

Minumum point: x* = (1, 0, 0), f(x*) = 0. 
Starting point: xo = (-1, 0, 0). 

(d) Wood's Function [4]-4 variables. 

f(X1, X2, X3, X4) = I00(x2 - 1) + (1 -x1) + 90(X4 -X3) 

+ (1 - X3)2 + 10.1[(x2 - 1)2 + (X4 - 1)2] 

+ 19.8(x2 - 1)(X4 - 1). 

Minimum point: x* = (1, 1, 1, 1), f(x*) = 0. 
Starting point: xo = (-3, -1, -3, -1). 

(e) Rosenbrock's Function [24]-2 variables. 
f(x1, x2) = 100 (X2 - X1)2 + (1 - 

Minimum point: x* = (1, 1), f(x*) = 0. 
Starting point: x0 = (-1.2, 1). 

(f) Squared Quadratic-N variables. 
f(X) = (x'Qx)2. 
Q diagonal matrix with diagonal elements qkk = k for k = 1, 2, , N. 
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Minimum point: x* = (0, 0,. , 0), f(x*) 0. 
Starting point: xo = (1, 1, 1, , 1). 

Comments. The squared quadratic function is a typical case that illustrates the 
advantage of self-scaling algorithms. In this case, the eigenvalues of the Hessian, 

TABLE 1 

SSVM (with FLETCHER'S [9] 
Func- (2ACC) M2 line searc1N METHOD (1) 
tion NAC- - 

a IT NF L.S IT NF IT NF IT NF 

(a) 6 10 
1 

0 6 8 1 6 14 7 15 - - 

(b) 6 10 0.01 28 (4) 30 1 7 29 7 29 - _ 

0.15 17 42 10 

0.2 7 29 7 

0.25 7 29 7 

(c) 3 10 0.15 53 84 14 27 69 23 52 - - 

0.2 26 54 13 

0.25 23 51 12 

(d) 4 10 0.05 98 138 15 60 183 31 93 122 136 

0.15 24 47 7 

0.2 26 56 11 

0.25 68 173 51 

(e) 2 10-lo 0.1 FAILED 33 137 24 74 39 47 

0.2 35 104 26 

0.25 29 85 22 

(f) 6 10 0.01 19 20 0 9 36 29 88 - - 

0.2 19 20 0 

0.25 15 20 2 

10 10 0.01 19 20 0 12 46 42 136 
E _ 

0.15 17 21 2 

0.2 17 21 2 

0.25 12 26 5 

20 10-9 0.01 22 26 1 16 56 78 (3) 236 - 

0.25 21 28 2 

30 10 0.01 25 30 1 20 60 89 270 - _ 

0.25 23 36 3 

50 10 0.01 31 37 1 28 86 134 381 - _ 

N-Number of variables. 
ACC-Accuracy required in f(x*). 
IT-Number of iterations until f(x) - f(x*) ? ACC. 
NF-Number of function evaluations until f(x) - f(x*) _ ACC. 
L.S.-Number of iterations in which line search was performed. 
(1)-Data taken from original paper (the numbers in the ACC column do not correspond to 

this data). 
(2)-The accuracy required is different for various functions since the actual stopping rule in 

the algorithms was based on the norm of the gradient. 
(3)-Accuracy obtained in f(x*) was 10-8. 
(4)-Accuracy obtained in f(x*) was only 10-6. 
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and consequently of R, drift constantly toward zero and since the DFP formula 
always guarantees a unit eigenvalue for R, the condition number is constantly in- 
creasing, which causes the poor behavior of the DFP algorithm in this case. The 
SSVM formula prevents this difficulty by resealing the D matrix and (therefore the R) 
at each updating. 

The success of the new method with Wood's function appears to be somewhat 
artificial since it performed much better than we would expect on the basis of its 
overall performance. This unusual behavior can be attributed to the nature of the 
function which has a "trap" in which most algorthims are usually caught. This trap 
was apparently avoided by our method. 

The low accuracy achieved with the new algorithm in minimizing the quadratic 
function based on the Hilbert matrix was caused by the excessive round-off error 
resulting from the poor conditioning of the Hilbert matrix. As mentioned earlier, the 
self-scaling updating formulae reduce the condition number of H112DH112 mono- 
tonically. This property is advantageous from a convergence rate viewpoint; however, 
if H is ill-conditioned, it will cause D to become ill-conditioned also, resulting in 
excessive round-off error. This difficulty can be overcome by an alternative implemen- 
tation of the above algorithm in which the Cholesky decomposition of the Hessian 
approximation is updated at each step and the direction of search is obtained by 
solving a system of linear equations. This method, which was originally developed 
by Gill and Murray [10] for the DFP, and Broyden's algorithms will allow control 
of the conditioning of D fairly easily, and thus reduce the round-off errors. 

6. Conclusion. We presented a class of idealized quasi-Newton algorithms in which 
the inverse Hessian approximation is updated by a two-parameter family of positive 
definition formulae and no line search is necessary. It was proved that in a quadratic 
case this algorithm converges in a finite number of steps or superlinearly. This result 
is much stronger than the one given by Fletcher [9] for a similar algorithm. The above 
result provided the motivation for implementing an algorithm with economic line 
searching based on the family of updating formulae mentioned above. Numerical 
experiments indicate a strong advantage for the proposed algorithms. The experiments 
in this paper were restricted to a particular updating formula that corresponds to 
the case where the parameters are both zero. It still remains to investigate the effect 
of varying these parameters. It is expected that such changes may have a significant 
effect, particularly since Dixon's [7] result does not apply in general to this class of 
formulae. Unfortunately, the theory available so far does not provide a basis for 
predicting such effects. 

We expect that further improvement of the new methods, particularly for ill- 
conditioned problems, will be achieved by using an alternative implementation based 
on Gill's and Murray's [10] approach. Yet this remains to be experimentally verified. 
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